If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43h=-h^2
We move all terms to the left:
43h-(-h^2)=0
We get rid of parentheses
h^2+43h=0
a = 1; b = 43; c = 0;
Δ = b2-4ac
Δ = 432-4·1·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-43}{2*1}=\frac{-86}{2} =-43 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+43}{2*1}=\frac{0}{2} =0 $
| 4m^2+5m=3 | | 4(4-3r)=112 | | 140/x=7/9 | | s/4=25 | | -14x-6=7x+8 | | 8w=42+2w | | 2x+8+2x+1+3x=180 | | 50=2(x*5+13)+(2x) | | 19p+4p-17p=18 | | -70=-5(8+2x)-5(2x-6) | | 96t^2-40t-16=0 | | 20n-10n+n-7n+1=4 | | (x+5)(x+1)=7 | | 6.5a+14=66 | | -176=-4(6n+2) | | .5=x/10 | | 121f^2+22f+1=0 | | 14n-10n-n-2n=19 | | 121^2+22f+1=0 | | W+8=5w | | 2.2=x/14 | | 5a-2a-1=20 | | 4r-4r+r+3=16 | | 5x-4+2x=6x-8 | | 11=5k+6 | | 18r-14r+2r-4r=20 | | 5y^2-35y+60=0 | | 5v+12=8v | | 3x+2+72=110 | | -18g+15g-g+4=-4 | | 16+x=-4 | | 4u^2+40u+100=0 |